Decoupling the Building Latent and Sensible Loads Using 100% Outside Air Systems

ASHRAE New York Seminar 41 January, 2008

Stanley A. Mumma, Ph.D., P.E. Professor of Architectural Engineering Penn State University, Univ. Park, PA email: sam11@psu.edu

http://doas-radiant.psu.edu

Outline

- What are 100% OA systems?
- What is the benefit of decoupling the space sensible and latent loads?
- What parallel sensible cooling equipment is available when dry ventilation air is delivered to the space?
- What are the operating benefits of these decoupled systems, including op. cost?
- A few pitfalls to avoid when applying these systems?

100% OA Systems

- 100% OA, but at a low flow rate, approximately the rate required by ASHRAE Std. 62.1-2007: i.e. <u>DOAS.</u> Also needed: Parallel sensible cooling only system to meet the thermal loads.
- 100% OA, at the flow rate required to meet the entire space sensible load frequently up to 5 times the flow needed for ventilation alone.

Will not be discussed here—but could be during the question time if interested.

Why decouple sensible and latent space loads with DOAS?

Tight humidity control minimizes the potential for IAQ problems and related sick-building illnesses*, and improves thermal comfort and productivity.

*Which are caused largely by *biological contaminants* breeding in damp ducts, ceiling tiles, insulation, behind vapor barriers and carpet.

Potential Health/productivity Related Economic benefits of DOAS

The significance of DOAS is illustrated by estimates that US companies lose as much as <u>\$48 Billion</u> annually to cover medical expenses and <u>\$160 Billion</u> annually in lost productivity as a result of sick-building illnesses.

Source: ASHRAE Literature.

- Medical & productivity cost (loss) to US business as % of GDP: (208/13,800)*100 = 1.5%
- National debt annual increase as a % of GDP: (500/13,800)*100 = 3.6%
- Katrina Gov. appropriations as %of GDP: (150/13,800)*100 = 1.1%

VAV problems solved with DOAS plus Radiant or Chilled Beam

- Poor air distribution.
- Poor humidity control.
- Poor acoustical properties.
- Poor use of plenum and mechanical shaft space.
- Serious control problems, particularly with tracking return fan systems.
- Poor energy transport medium, air.
- Poor resistance to the threat of biological and chemical terrorism, and
- Poor and unpredictable ventilation performance.

Additional benefits of DOAS

Beside solving problems that have gone unsolved for over 30 years with conventional VAV systems, note the following benefits:

- Greater than 50% reduction in mechanical system operating cost compared to VAV.
- Equal or lower first cost.
- Simpler controls.
- Generates up to 80% of points needed for basic LEED certification.

Failing to minimize the use of a chiller when it is cool outside — can be a pitfall for DOAS systems.

- EW binary control—a duty cycle saves chiller operation.
- EW using a VFD, maximizes the free cooling of a DOAS.

